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Electric polarization

• Fundamental physical quantity of insulators

• Characterize dielectric properties of insulators

• Piezoelectricity, Ferroelectricity, Magnetoelectric effect

• Many applications

• Capacitor, Piezoelectric device, Ferroelectric memory

• Momentum dependence: Characterize topological insulators



Perturbations and Responses
1. Mecanical 2. Thermal 3. Electric 4. Magnetic 5. Chemical

1. Mecanical Elasticity Thermal 
expansion

Electromechanical Magnetostriction Osmotic pressure

2. Thermal Thermal 
insulating

Thermal 
conductivity

Pyroelectric/
Thermoelectric 
(Peltier)

Thermomagnetic Heat diffusion

3. Electric Piezoelectric Pyroelectric/
Thermoelectric
(Seebeck)

Electric Polarization
Electric Conductivity

Magnetoelectric Battery

4. Magnetic Magnetostriction Thermomagnetic Magnetoelectric Magnetization ?

5. Chemical Osmotic pressure Heat diffusion Battery ? diffusion

Perturbations

Responses

Based on the table of  Hidetoshi Takahashi 
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Dipole sum of discrete charges

Periodic boundary condition

The polarization P is defined as the dipole 
moment per unit volume, averaged over 
the volume of a cell. 

In the textbook …



Problems in electric polarization

• Resta (1992): 
Contrary to common textbook statements, 
the dipole of a periodic charge distribution 
is ill defined, except the case in which the 
total charge is unambiguously decomposed 
into an assembly of localized and neutral 
charge distributions.

P is not a bulk property, while the 
variations of P are indeed measurable.



Can we compute P from charge density ?

∇⋅Pel (r) = −ρ(r)

Local polarization field Pel(r)

Charge distribution is continuous in real materials.

Pel =
1
Ω

P(rcell∫ )dr

= 1
Ω

drρ(r)rcell∫ + 1
Ω

r n ⋅P(r)[ ]dssurface∫

Conclusion：

•Absolute value of polarization is not bulk property

•Dipole moment divided by unit cell volume ≠ Polarization

R. M. Martin, PRB 9, 1998(1974).

cell to cell term (current)



Observation of electric polarization

• Current induced by perturbation

• Change in polarization by perturbation
J λ( ) = ∂P

∂λ

ΔP = J λ( )dλ∫ = ∂P
∂λ

dλ∫

�

�

�

j = −nev

ΔP = −nev
0

Δt

∫ dt = −ner(Δt )[ ] − −ner(0)[ ]

= P(Δt) − P(0)

In classical way: 



Electric currents and polarization I

Electric polarization expressed by wave function
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Electric currents and polarization II

Electric polarization expressed by wave function
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Velocity operator
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Electric currents and polarization III

Electric polarization expressed by wave function
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Electric currents and polarization IV

Heisenberg Equation of Motion

i!dr
dt

= [r; H]

i!v = [r; H]

Bloch wavefunction and its periodic part

~H = e`ik´rHeik´r

e`ik´r[r; H]eik´r = e`ik´r
 

i!dr
dt

!

eik´r = i!~v
if [rk; H] = 0,

rk ~H = `ire`ik´rHeik´r + e`ik´rHeik´rir
rk ~H = `i[r; ~H] = !~v
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Electric currents and polarization V

Electric polarization expressed by wave function
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Electric currents and polarization VI

First-order perturbation theory

‹ ~H = ~H(k+´k)` ~H(k)
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Ordinary derivative to partial derivative
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Electric currents and polarization VII

Electric polarization expressed by wave function
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Electric polarization 
expressed by Berry phase 

(King-Smith & Vanderbilt 1993) 

Electric currents and polarization X

Electric polarization expressed by wave function
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Electric currents and polarization XI

Example: Orthorhombic unitcell
Case: (k˛; k‚) = (0; 0) sampling , G˛ = 2ı

b , G‚ =
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Computing Electric Polarization III

Numerical calculation of Berry Phase
A = logS $ expA = S

det exp A = exp tr A, log detS = tr logS
Snm(k; k0)jk=k0 = ‹mn
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Computing Electric Polarization III

Numerical calculation of Berry Phase
A = logS $ expA = S
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Computing Electric Polarization IV

Numerical calculation of Berry Phase
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If we use k-point sampling mesh J along k¸ direction,
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Computing Electric Polarization V

Numerical calculation of Berry Phase
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Overlap matrix S in OpenMX

Electric Polarization by Berry Phase: Ver. 1.1

Taisuke Ozaki, RCIS, JAIST

June 11, 2008

The polarization coming from the electric contribution is given by

P =
3∑

k=1

Pi Ri. (1)

Pi can be evaluated by the following Berry phase formula [1, 2]:

2πPi = Gi · P

= − e

(2π)3
∑

σ

∫

B
dk3Gi ·

(
∂

∂k′ ησ(k,k′)
)

k′=k
, (2)

where
∫
B means that the integral over the first Brillouin zone of which volume is VB. The quantum

phase ησ(k,k′) is given by

ησ(k,k′) = Im
{
ln

(
det〈u(k)

σµ |u(k′)
σν 〉

)}
, (3)

where µ and ν run over the occupied states. The integration and derivative in Eq. (2) are approximated
by a discretization:

Gi · P ≈ − e

VBN2N3

∑

σ

N2−1,N3−1∑

i2=0,i3=0

N1−1∑

i1=0

ησ(ki1i2i3 ,k
′
i1+1i2i3). (4)

Noting that

ψ(k)
σµ (r) = eik·ru(k)

σµ (r),

=
1√
N

N∑

n

eiRn·k
∑

iα

c(k)
σµ,iαφiα(r − τi − Rn), (5)

the overlap matrix 〈u(k)
σµ |u(k+∆k)

σν 〉 in Eq. (3) is evaluated as

〈u(k)
σµ |u(k+∆k)

σν 〉 = 〈ψ(k)
σµ |eik·re−ik·re−i∆k·r|ψ(k+∆k)

σν 〉,
= 〈ψ(k)

σµ |e−i∆k·r|ψ(k+∆k)
σν 〉,

=
1
N

∑

n,n′

∑

iα,jβ

c(k)∗
σµ,iαc(k+∆k)

σν,jβ e−ik·(Rn−Rn′ ) ×

〈φiα(r − τi − Rn)|e−i∆k·(r−Rn′ )|φjβ(r − τj − Rn′)〉. (6)

Defining that

r′ = r − τi − Rn, (7)
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Overlap matrix S in OpenMX
we have

〈u(k)
σµ |u(k+∆k)

σν 〉 =
1
N

∑

n,n′

∑

iα,jβ

c(k)∗
σµ,iαc(k+∆k)

σν,jβ e−ik·(Rn−Rn′ ) ×

〈φiα(r′)|e−i∆k·(r′+τi+Rn−Rn′ )|φjβ(r′ + τi − τj + Rn − Rn′)〉. (8)

Since each term depends on only the relative position Rn − Rn′ , Eq. (8) becomes

〈u(k)
σµ |u(k+∆k)

σν 〉 =
∑

n

∑

iα,jβ

c(k)∗
σµ,iαc(k+∆k)

σν,jβ eik·Rn × 〈φiα(r′)|e−i∆k·(r′+τi−Rn)|φjβ(r′ + τi − τj − Rn)〉,

=
∑

n

∑

iα,jβ

c(k)∗
σµ,iαc(k+∆k)

σν,jβ eik·Rne−i∆k·(τi−Rn)〈φiα(r′)|e−i∆k·r′ |φjβ(r′ + τi − τj − Rn)〉, (9)

The exponential function in Eq. (9) can be approximated by

e−i∆k·r′ ≈ 1 − i∆k · r′. (10)

Thus, Eq. (9) becomes

〈u(k)
σµ |u(k+∆k)

σν 〉 =
∑

n

∑

iα,jβ

c(k)∗
σµ,iαc(k+∆k)

σν,jβ eik·Rne−i∆k·(τi−Rn) ×

{
〈φiα(r′)|φjβ(r′ + τi − τj − Rn)〉 − i∆k · 〈φiα(r′)|r′|φjβ(r′ + τi − τj − Rn)〉

}
, (11)

where the overlap integral is evaluated in momentum space, and the expectation value for the position
operator is evaluated using the same real space mesh as for the solution of Poisson’s equation in
OpenMX.
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where the overlap integral is evaluated in momentum space, and the expectation value for the position
operator is evaluated using the same real space mesh as for the solution of Poisson’s equation in
OpenMX.
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Electric polarization and water 
dipole moment in ferroelectric ice

First-principles study of spontaneous polarisation and water dipole moment
in ferroelectric ice XI
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Using density functional calculations, spontaneous polarisation of proton-ordered ferroelectric ice XI phase is calculated for
the first time. Spontaneous polarisation along the c-axis of orthorhombic Cmc21 structure is calculated to be 21mC=cm2,
which corresponds to water dipole moment 3.3D. We have performed systematic calculation of the water dipole moment in
proton-ordered ice without ambiguity.

Keywords: water molecule; ice; density functional theory; electric polarisation; electric dipole moment, electronic
structure

1. Introduction

Ice, the crystalline phases of water, has a rich pressure–
temperature phase diagram [1]. Among many phases of
ice, an ordinary ice is classified in the ice Ih phase, which
is formed when liquid water is cooled below 273K at
standard atmospheric pressure. The crystal structure of ice
Ih has hexagonal symmetry, space group P63=mmc. The
proton in ice Ih is disordered, and it satisfies ice rules,
which states that each oxygen is covalently bonded to two
hydrogen atoms, and every water molecule is hydrogen
bonded to exactly four nearest-neighbour water molecules.
The ice Ih doped with KOH shows first-order phase
transition at 72K to low-temperature proton-ordered phase
of ice XI [2–4]. Ice XI has orthorhombic symmetry, space
group Cmc21 without space inversion symmetry. The
crystal structure becomes polar in ice XI and ferroelectric
phase in which electric dipoles are ordered with net
electric polarisation, while ice Ih is the paraelectric phase
in which electric dipoles are disordered without net
electric polarisation. Though the spontaneous polarisation
is one of the most important physical properties which
characterises ferroelectricity, the magnitude of spon-
taneous polarisation in ice XI has not been reported so far.

Water molecular dipole moment in condensed phases
is different from its isolated one. Batista et al. [5] have
performed first-principles calculation of water dipole
moment of ice Ih phase using space partition methods and
obtained the water dipole moment between the value of 2.8
and 3.2D, which depends on the way of space partition. It
is important to evaluate water molecular dipole moment in
crystal for understanding the origin of the spontaneous

polarisation. Moreover, the electric dipole moment of the
water molecule is a basic amount which determines
the dielectric characteristic of the polarity solvent. In the
previous first-principles calculation of water dipole
moment in the liquid phase, it is estimated to be about
3D in contrast with often assumed value 2.6 D [6].

The purpose of this study is to explore the spontaneous
polarisation of the ferroelectric ice XI from first principles.
In order to clarify the origin of spontaneous polarisation,
we have performed systematic calculation of spontaneous
polarisation and water dipole moment with changing
molecular distance covering from the gas phase to the
condensed phases.

2. Methods

Using the OPENMX code [7], we perform first-principles
electronic structure calculations based on the density
functional theory within the generalised gradient approxi-
mation [8]. The norm-conserving pseudopotential method
[9] is used. We use the linear combination of multiple
pseudo-atomic orbitals generated by a confinement scheme
[10,11]. The partial core correction [12] is considered for
oxygen atom. The electric dipole moment for bulk system is
calculated by the Berry phase method [13]. The method
allows one to compute a change in electric polarisation of
periodic system between two different states from the
phases of Bloch wave function. The k-space integration is
achieved with (8, 8, 8) k-point mesh for orthorhombic
reciprocal unit lattice vectors (a*, b*, c*) in self-consistent
field calculations.
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Problem: definition of dipole moment in   
periodic system 
•R. Martin (1974)
Knowledge of the 
charge density in a 
unitcell is not 
sufficient to determine
the polarization.

P = Ω−1
P r( )d

3

cell
∫ r ∇⋅P r( ) = −n r( )

P = Ω−1
rn r( )d

3

cell∫ r +Ω−1
r P r( ) ⋅ dS[ ]

surface∫

E.R. Batista, S.S. Xantheas, H. Jonsson (J. Chem. Phys. 111, 6011(1999))



E.R. Batista, S.S. Xantheas, H. Jonsson
(J. Chem. Phys. 111, 6011(1999))

Charge density partition

multipole moments are to slight changes in the partitioning
of the charge density, we devised two other spatial partition-
ing schemes.

!ii" Voronoi I !V-I": The charge density is divided into
Voronoi cells using the center of charge on each molecule as
the center of the Voronoi cell. The charge closest to the
center of ionic charge of a given molecule is assigned to that
particular molecule. The molecule is then described by only
one point, namely the center of charge. Therefore no infor-
mation regarding the geometry and orientation of the mol-
ecule is used in this scheme.

!iii" Voronoi II !V-II": The charge density is divided into
Voronoi cells taking the position of individual atoms into
account. If the hydrogen atoms are treated on an equal foot-
ing as the oxygen atoms, then the Voronoi construction di-
vides the space near a hydrogen bond midway between the
hydrogen and oxygen atoms. The region associated with a
hydrogen atom then cuts significantly into the charge density
that is centered at oxygen atoms in neighboring molecules.
We, therefore, have chosen to shift the Voronoi center asso-
ciated with the hydrogen atoms along the O–H bonds toward
the oxygen to make it lie closer to the minimum of the elec-
tron density. By inspection of contour plots of the charge
density, we chose to displace the Voronoi centers for the
hydrogen atoms by 60% from the hydrogen atom nucleus
toward the oxygen nucleus in the molecule. The Voronoi
cells in both schemes turn out to be very nearly charge neu-
tral, to within 0.01 electronic charge.

Figure 1 shows a contour plot of the charge density of
the pentamer in the plane of the cluster as well as Voronoi I

and Voronoi II dividing surfaces. In each of the three previ-
ously described spatial decomposition methods the volume
associated with a water molecule is the volume correspond-
ing to each of the two hydrogen atoms plus the volume cor-
responding to the oxygen atom. Similar contour plots are
obtained for the other clusters.

!iv" Molecular Proportion Partitioning Method !MPP":
The electronic charge density of the cluster at any point in
space is partitioned among the individual molecules in pro-
portion to the electronic charge density of the isolated mol-
ecules at that point.

The results for the multipoles obtained with the above
four schemes are compared with the ones obtained from an
induction model which is described in detail in Ref. 21.
Briefly, every water molecule is represented in the induction
model as a point dipole, quadrupole, octopole and hexadeca-
pole moment tensor placed at the center of mass of the
molecule.44 The electric field at a molecule due to its neigh-
bors induces both a dipole and a quadrupole moment. We
used the experimentally measured values for the dipole and
quadrupole moments, the MP2/aug-cc-pVQZ values for the
octopole and hexadecapole moments, the experimentally
measured molecular dipole polarizability, # i j ,45 and the re-
sults of previous ab initio calculations for the dipole-
quadrupole, Ai , jk , quadrupole-quadrupole polarizability,
Ci j ,kl ,46 and the first hyperpolarizability, $ i jk .47 The values
of the moments and polarizabilities used here are the ones
shown in Tables I and II of Ref. 21.

IV. RESULTS AND DISCUSSION

The variation of the average dipole moment with cluster
size is shown in Fig. 2. The different partition schemes of the
charge density clearly lead to very different molecular dipole
moments. The average dipole moment of a molecule in ice Ih
ranges from 2.3 D for the Voronoi II scheme to 3.1 D for the
Voronoi I scheme. The AIM scheme gives intermediate re-
sults. Due to proton disorder, the dipole moment varies
slightly from one molecule to another in a given ice Ih con-
figuration !the standard deviation is 0.04 Debye". The differ-
ence in the dipole moments deduced from the MP2 and DFT
calculations differ by less than 0.1 D for all the clusters. The
results of the MPP scheme were also intermediate between
the two Voronoi schemes, 2.05 D for the average molecular
dipole moment in the dimer and 2.19 D in the pentamer. The
induction model gives larger dipole moments than any of the
schemes used to partition the charge density obtained from
first principles calculations for larger clusters and ice Ih.

The large sensitivity of the calculated molecular mo-
ments to details of the partitioning scheme can also be seen
from a particularly simple scheme, namely the assignment of
a spherical region to each water molecule. Choosing the ra-
dius of the sphere to give charge neutrality in each case, the
molecular dipole moment calculated for a water molecule in
ice differs by 0.5 D depending on whether the center of the
sphere is placed at the center of mass or center of charge of
the water molecule. The two centers are only 0.08 Å apart.

Despite the large range of values obtained for the mo-
lecular dipole moment depending on which scheme is used,
it is, nevertheless, apparent that the dipole moment of a wa-

FIG. 1. Contour plot of the charge density of the water pentamer in the
plane of the cluster. The figure displays the charge density partitioned ac-
cording to the Voronoi I !dotted line" and Voronoi II !solid line" schemes
!see text". In the Voronoi I scheme, the Voronoi cell is constructed around
one center per molecule, placed at the center of nuclear charge. In Voronoi
II, the Voronoi cells are around three ‘‘atomic’’ centers per molecule: one at
the oxygen atom and the other two !shown with crosses" on the O–H bonds,
at 40% of the displacement from the oxygen atom to the hydrogen nucleus.
Although both surfaces are very similar, the latter passes closer through the
minimum of the charge density between the molecules.

6013J. Chem. Phys., Vol. 111, No. 13, 1 October 1999 Water in clusters and ice Ih
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Charge distribution in ferroelectric ice

Figure 1 shows the crystal structure of ice XI phase. As
mentioned above, the proton-ordered structure of ice XI
phase has orthorhombic symmetry [4], space group Cmc21
with the same lattice as the proton-disordered ice Ih phase
which has hexagonal symmetry, space group P63=mmc. In
the calculation of electric spontaneous polarisation, we use
experimental lattice constant and internal parameters [4].
The lattice constants are a ¼ 4.5019 Å, b ¼ 7.7978 Å
and c ¼ 7.3280 Å.

3. Results and discussion

Figure 2 shows the calculated charge density contour
map of ice XI phase. Significant charge density 0.01e-
0.1 e/bohr3 can be seen on the hydrogen bonds at the

intermolecular region. Therefore, the calculation of the
water dipole moment from charge density with space
partition methods has ambiguity. The Berry phase method
is indispensable for calculating water dipole moment and
spontaneous polarisation.

Figure 3 shows the calculated (a) band structure and
(b) total density of states of ice XI. The band structure of
ferroelectric ice XI phase is plotted along the high
symmetry axes of the Brillouin zone. The high symmetry
points G, Z, U, X and Y indicate (0, 0, 0), ð0; 0;p=cÞ,
ðp=a; 0;p=cÞ, ðp=a; 0; 0Þ and ð0;p=b; 0Þ in terms of
ðkx; ky; kzÞ, respectively. As there are eight molecules in the
unit cell, the valence electrons are totally 64 and the
occupied bands are 32 spin degenerated bands. The
valence band top is at 20.3 eV at G points, and there is a
direct bandgap of about 6 eV. The bands between 24 and
0 eV with dispersion for each k-direction show the
delocalised nature of electronic wave functions expressed
by the Bloch wave functions.

Calculated water dipole moment in an isolated
molecule is 1.9 D in the present calculation which is
in good agreement with experimental value [14]. If there
is no interaction between the water molecules, the

Figure 1. Perspective views of crystal structure of ice XI phase from (a) [100], (b) [010] and (c) [001] directions. Large and small
spheres represent O and H atoms, respectively.
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Figure 3. Electronic structure of ice XI phase. Calculated
(a) band structure and (b) total density of states. The valence band
top is taken at the origin of the energy.

Figure 2. The charge density of ice XI phase viewed from
a-axis perpendicular to the polarisation direction. Contours are
drawn on a logarithmic scale (from 1.0e-4 to 1.0 e/bohr3).
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Water dipole moment in hypothetical crystal

spontaneous polarisation of ice is simply the sum of
isolated water dipole moment in the unit cell. Thus, the
spontaneous polarisation along orthorhombic c-axis
would be 15mC/cm2 which corresponds to water dipole
moment 1.9D. By using the Berry phase method, the
spontaneous polarisation is calculated to be 21mC/cm2.
This value of polarisation corresponds to water dipole
moment 3.3D. We found that in the ice XI phase, the
value of dipole moment is 74% higher than in the gas
phase. It is worthwhile to comment that the value of
spontaneous polarisation is larger than that of typical
order–disorder type ferroelectrics such as 12mC/cm2 in
NaNO2 [15].

In order to understand the enhancement of water dipole
moment in ice, we assume simple crystal structure of
model ice for calculating molecular distance dependence
of water dipole moment. Figure 4 shows the water dipole
moment of model ice with a perspective view of the
structure. The water dipole moment changes with
oxygen–oxygen distance ROO. The model ice structure
has a cubic unit cell, and the water molecules are located at
the centre and the corner of the unit cell. The crystal
structure has tetrahedral coordination of water molecules
which is the same as the ice XI phase. If we change unit the
cell volume and keep water molecules at the centre and
the corner of cubic box, we can calculate spontaneous
polarisation and water dipole moment with different
molecular distance, which corresponds to the gas phase
and the condensed phase. In ice XI phase, the distance
between the oxygen atoms is 2.74 Å, where evaluated
water dipole moment in the model ice is 3.3D. This value
is in good agreement with the calculated value for ice XI
phase. Then, the water dipole moment in the model ice
structure can explain different dielectric properties for
different intermolecular distances. As seen in Figure 4, the
water dipole moment is enhanced from 2.0 D at

ROO ¼ 5.4 Å to 4.0D at ROO ¼ 2.4 Å. The shorter the
ROO becomes, the larger the water dipole moment is
realised; a steep increase is found around ROO ¼ 3.5 Å,
owing to the condensed phase effect, i.e. hydrogen-bond
mediated covalency [16]. For the liquid water, first peaks
in oxygen–oxygen distribution function have theoretically
been estimated to be between 2.69 and 2.76 Å [17,18].
The corresponding dipole moment in Figure 4 is found to
be 3.3 D, although spatial disorder in the liquid water is not
accounted for. The value is slightly larger than that of the
calculated value for liquid water phase by the Wannier
function approach [6]. This difference may come from
ferroelectric order of water molecules in this study, while
water molecules are disordered in the liquid phase.

4. Summary

By using density functional calculations, spontaneous
polarisation of proton-ordered ice XI phase is calculated
for the first time. We have evaluated the explicit water
dipole moment in ice without ambiguity arising from
space partition. The dipole moment for the model ice
structure which is similar to ice XI phase can describe the
enhancement of the electric dipole moment in the
condensed phase of water.
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in typical ferroelectrics
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We have performed first-principles calculations of quasi-one-dimensional Ca3CoMnO6 to investigate the origin of the
multiferroicity. We revealed the electronic structure and the reversal of the electric-polarization mechanism induced by
magnetic structure changes. We found that the electric polarization originates from symmetry breaking due to magnetic
ordering in the quasi-one-dimensional Ising spin chains. We further clarified the strong relationship between the
magnetic structure and the electric polarization; this is the variation of the magnetic configuration-induced transition
mechanism between the ferroelectric state and the ferrielectric states. Our findings are expected to explain the
discrepancy between the magnitude of the electric polarization in previous theoretical and experimental studies.

1. Introduction

Ferroelectromagnets1) have recently attracted revived
interests as multiferroics.2) Multiferroics show a magneto-
electric effect, i.e., magnetization changes depending on
electric field or electric polarization changes depending on
the magnetic field. The magnetoelectric effect has attracted
attention for possible applications in spintronics devices.
Several multiferroics such as TbMnO3, MnWO4, Ni3V2O8,
and LiCuVO4 have non-collinear antiferromagnetic spiral
magnetic structures.3–6) These magnetic orders originate from
frustration in the magnetic interactions. On the other hand,
there are collinear multiferroics Ca3CoMnO6, Lu2MnCoO6,
and Y2CoMnO6 where the magnetic orders originate from
frustration in magnetic interactions.7–10)

The multiferroic Ca3CoMnO6 consists of the quasi-one-
dimensional Ising spin chain of (CoMnO6)2 in the hexagonal
c-direction.7) According to neutron powder-diffraction meas-
urements, the magnetic order of the spin chains was ""##
(Mn–Co–Mn–Co).7) Furthermore, it was clarified that
magnetic phase appears below 16.5K, and the electric
polarization increases as the temperature decreases. The
electric polarization is 310 µC/m2 at 2K.7,8) In previous
theoretical studies based on density functional theory, the
electric polarization originates from the displacement of the
magnetic atoms induced by exchange striction. The system
becomes lower in energy due to changes in the exchange
interactions by the displacement of magnetic atoms.11) It was
reported that the Mn atoms are alternatively displaced as
+0.006 and ¹0.006Å by first-principles calculation.12) Using
the displacement distance, we estimated the electric polar-
ization as 19934 µC/m2 by treating Co2+ and Mn4+ as point
charges. When the Jahn–Teller distortion is considered, the
calculated value13) of the electric polarization was 17700
µC/m2 which is much larger than the experimental value.

There are two possibilities as the reason for the discrep-
ancy between the experimentally observed electric polar-
ization and those of the theoretical calculated results. One
reason is that density functional theory calculations over-
estimate atomic displacements. As a result, the value of the
electric polarization was overestimated. It was reported that
the calculated largest atomic displacement is 0.05–0.06Å for
oxygen atom.13,14) The other reason is the variation of the

magnetic configuration of the triangular lattice composed of
Ising spin chains. The previous theoretical calculations12,13)

are performed using only one magnetic configuration. If there
are antiferromagnetic inter-chain interactions in the triangular
lattice, the spin frustration should be induced. As a result,
the spin is difficult to order because of geometrical spin
frustration, and the value of the electric polarization is small.

In this study, we focus on the relationship between the
inter-chain magnetic interaction and electric polarization. We
perform first-principles calculations on Ca3CoMnO6 using
density functional theory. We evaluate the pure electronic
polarization using the Berry phase method. The origin of the
electric polarization is explained by the electronic states. To
understand the relation between the electric polarization and
magnetic structures, we investigate the total energies and
electronic states in several magnetic structures. We reveal
the electric polarization reversal mechanism with magnetic
structural change, that is, the direction of the electric dipole
moment of a spin chain reverses when the localized spins
are shifted to the next site. In addition, we suggest that
experimentally observed electric polarization is ferrielectric
polarization due to the inter-chain exchange interaction.

2. Methods

Using the OPENMX code,15) we performed first-principles
electronic-structure calculations based on the density func-
tional theory within the generalized-gradient approxima-
tion.16) Norm-conserving pseudopotentials17) are used. We
used linear combinations of multiple pseudo-atomic orbitals
generated by a confinement scheme.18,19) The Kohn–Sham
orbitals are expressed by

!!ðrÞ ¼
X

i"

c!;i"#i"ðr$ riÞ;

where i is a site index and #i" % YlmRipl is a numerical
atomic orbital with the orbital indices " ¼ ðplmÞ. The
spherical harmonics Ylm depend on the angular momentum
quantum number l and the magnetic quantum number m.
The radial wave function Ripl depends on i as well as the
multiplicity index p and l. The wave functions are
expanded using pseudo-atomic orbitals as Ca5.0–s2p2d2,
Co5.5–s2p2d2, Mn5.5–s2p2d2, and O4.0–s2p2d1. The
numbers immediately after the chemical symbol
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ð5:0; 5:5; 4:0Þ are the cutoff radii (a.u.), while the latter parts
of the expansion (e.g., s2p2d2, etc.) are the number of
orbitals for the s, p, and d characters.19) We consider partial
core correction20) for all atoms. The electric polarization is
calculated using the Berry phase method.21) We can obtain
electric polarization by the Berry phase method using

Pð!Þ
" ¼ 2e

!

1

K"

Z K"

0

huð!Þk j @

@k"
juð!Þk i dk";

where ³ is the cell volume, ¡ is an index of the electric
polarization component along the lattice vector R", u

ð!Þ
k is a

periodic function, K is the reciprocal lattice vector,  denotes
a set of parameters such as the atomic displacements, e is the
electron charge, and k is the Bloch wave vector. We used a
uniform ð4; 4; 4Þ k-point mesh for self-consistent calculations
and the k-point sampling of ð2; 2; 8Þ for Berry phase
calculation.

3. Crystal Structure and Magnetic Configurations

The K4CdCl6-type Ca3CoMnO6 belongs to the inversion
symmetric space group R"3c at room temperature. In the
present calculations, we used the atomic coordinates reported
by a neutron diffraction measurement.22) The hexagonal unit
cell contains six formula units (66 atoms). The experimental
lattice constants are a ¼ 9:1314Å and c ¼ 10:5817Å.22)

Figure 1(a) shows the crystal structure, which is viewed in
the (110) direction. We can see the quasi-one-dimensional
Ising spin chains of (CoMnO6)2, which consist of CoO6

trigonal prisms and MnO6 octahedra along the c-direction.
These chains are indicated by (i)–(iii), as shown in Fig. 1(b).

As discussed above, the neutron powder-diffraction
measurements clarified that the magnetic order of the spin
chain in the ground state of Ca3CoMnO6 was ""##.7)
Therefore, in the study, we assumed that the magnetic order
in the intra-chain is only ""##. Figure 2(a) shows the
triangular lattices comprising of the Co–Mn chain viewed
from the (001) direction. There are three chains labeled (i)–
(iii) in the unit cell. Figure 2(b) shows the three quasi-one-
dimensional Ising spin chains of (CoMnO6)2 corresponding
to Fig. 2(a). The chain-indexes denote the site of the
triangular lattice in Fig. 2(a). Figure 2(c) shows the four
magnetic orders ""## labeled from A to D, and we use these
definitions to classify the magnetic structure of ""##. In the
following discussion, the magnetic structures are specified by
the indices (i, ii, iii) as ðA;B;AÞ, for example. If we restrict
the magnetic structure of the three chains to ""##, there are
64 (¼ 43) spin configurations. These 64 spin configurations
can be classified by 6 non-equivalent spin configurations
using symmetry arguments. We investigate the six spin
configurations in detail.

4. Results and Discussion

4.1 Total energy and electronic structures
We labeled the spin configurations Mi in ascending

order of the total energy determined by our calculations.
Figures 3(a) and 3(b) show the M0 and M1 spin config-
urations, respectively. The M0 spin configuration is the most
stable magnetic structure. On the other hand, the M1 spin
configuration was experimentally observed.7) Table I shows
the calculated total energy, which is measured from the M0

spin configuration. The total energy difference in the six

spin configurations is within 3.7meV/f.u. These energy
differences are expected to originate from inter-chain
exchange interactions. Note that the M0 and M1 spin
configurations are stable and almost degenerate, within
0.10meV/f.u., respectively.

(a)

(b)

Fig. 1. (Color online) Crystal structure of Ca3CoMnO6. The large blue
spheres and the small blue spheres represent Ca and Co atoms, respectively.
The large magenta spheres and the small red spheres represent Mn and O
atoms, respectively. (a) Perspective view from the (110) direction. The blue
and magenta shaded areas show the CoO6 trigonal prism and MnO6

octahedra, respectively. (i)–(iii) represent the index of the quasi-one-
dimensional chains of (CoMnO6)2. (b) Perspective view from the (001)
direction. We see that the quasi-one-dimensional chains are arranged in
triangular lattices.

(a) (b)

(c)

Fig. 2. (Color online) Definition of the spin configurations. (a) Crystal
structure viewed from the (001) direction excluding the Ca and O atoms
in Fig. 1(b). (b) Three quasi-one-dimensional chains of (CoMnO6)2. The
indices from 1 to 4, at the left side of each chain represent the magnetic atom
sites in the intra-chain. The line specifies the atoms in the crystallographic
unit cell. The numbers from (i) to (iii) correspond to the lattice sites in (a).
(c) The four spin configurations ""## are indexed from A to D. The
numbers at the left side of the pattern correspond to the numbers in (b).
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ð5:0; 5:5; 4:0Þ are the cutoff radii (a.u.), while the latter parts
of the expansion (e.g., s2p2d2, etc.) are the number of
orbitals for the s, p, and d characters.19) We consider partial
core correction20) for all atoms. The electric polarization is
calculated using the Berry phase method.21) We can obtain
electric polarization by the Berry phase method using

Pð!Þ
" ¼ 2e

!

1

K"

Z K"

0

huð!Þk j @

@k"
juð!Þk i dk";

where ³ is the cell volume, ¡ is an index of the electric
polarization component along the lattice vector R", u

ð!Þ
k is a

periodic function, K is the reciprocal lattice vector,  denotes
a set of parameters such as the atomic displacements, e is the
electron charge, and k is the Bloch wave vector. We used a
uniform ð4; 4; 4Þ k-point mesh for self-consistent calculations
and the k-point sampling of ð2; 2; 8Þ for Berry phase
calculation.

3. Crystal Structure and Magnetic Configurations

The K4CdCl6-type Ca3CoMnO6 belongs to the inversion
symmetric space group R"3c at room temperature. In the
present calculations, we used the atomic coordinates reported
by a neutron diffraction measurement.22) The hexagonal unit
cell contains six formula units (66 atoms). The experimental
lattice constants are a ¼ 9:1314Å and c ¼ 10:5817Å.22)

Figure 1(a) shows the crystal structure, which is viewed in
the (110) direction. We can see the quasi-one-dimensional
Ising spin chains of (CoMnO6)2, which consist of CoO6

trigonal prisms and MnO6 octahedra along the c-direction.
These chains are indicated by (i)–(iii), as shown in Fig. 1(b).

As discussed above, the neutron powder-diffraction
measurements clarified that the magnetic order of the spin
chain in the ground state of Ca3CoMnO6 was ""##.7)
Therefore, in the study, we assumed that the magnetic order
in the intra-chain is only ""##. Figure 2(a) shows the
triangular lattices comprising of the Co–Mn chain viewed
from the (001) direction. There are three chains labeled (i)–
(iii) in the unit cell. Figure 2(b) shows the three quasi-one-
dimensional Ising spin chains of (CoMnO6)2 corresponding
to Fig. 2(a). The chain-indexes denote the site of the
triangular lattice in Fig. 2(a). Figure 2(c) shows the four
magnetic orders ""## labeled from A to D, and we use these
definitions to classify the magnetic structure of ""##. In the
following discussion, the magnetic structures are specified by
the indices (i, ii, iii) as ðA;B;AÞ, for example. If we restrict
the magnetic structure of the three chains to ""##, there are
64 (¼ 43) spin configurations. These 64 spin configurations
can be classified by 6 non-equivalent spin configurations
using symmetry arguments. We investigate the six spin
configurations in detail.

4. Results and Discussion

4.1 Total energy and electronic structures
We labeled the spin configurations Mi in ascending

order of the total energy determined by our calculations.
Figures 3(a) and 3(b) show the M0 and M1 spin config-
urations, respectively. The M0 spin configuration is the most
stable magnetic structure. On the other hand, the M1 spin
configuration was experimentally observed.7) Table I shows
the calculated total energy, which is measured from the M0

spin configuration. The total energy difference in the six

spin configurations is within 3.7meV/f.u. These energy
differences are expected to originate from inter-chain
exchange interactions. Note that the M0 and M1 spin
configurations are stable and almost degenerate, within
0.10meV/f.u., respectively.

(a)

(b)

Fig. 1. (Color online) Crystal structure of Ca3CoMnO6. The large blue
spheres and the small blue spheres represent Ca and Co atoms, respectively.
The large magenta spheres and the small red spheres represent Mn and O
atoms, respectively. (a) Perspective view from the (110) direction. The blue
and magenta shaded areas show the CoO6 trigonal prism and MnO6

octahedra, respectively. (i)–(iii) represent the index of the quasi-one-
dimensional chains of (CoMnO6)2. (b) Perspective view from the (001)
direction. We see that the quasi-one-dimensional chains are arranged in
triangular lattices.

(a) (b)

(c)

Fig. 2. (Color online) Definition of the spin configurations. (a) Crystal
structure viewed from the (001) direction excluding the Ca and O atoms
in Fig. 1(b). (b) Three quasi-one-dimensional chains of (CoMnO6)2. The
indices from 1 to 4, at the left side of each chain represent the magnetic atom
sites in the intra-chain. The line specifies the atoms in the crystallographic
unit cell. The numbers from (i) to (iii) correspond to the lattice sites in (a).
(c) The four spin configurations ""## are indexed from A to D. The
numbers at the left side of the pattern correspond to the numbers in (b).
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We now study the relationship between the magnetic
structure and the electric polarization. For the six spin
configurations, the density of states (DOS) are similar, so we
show the DOS and the partial DOS (PDOS) for the M0 spin
configuration (Fig. 4). As shown in Fig. 4(a), the band gap is
0.8 eV. The magnitude of the spin moment is 2.56!B and
2.68!B for Co and Mn, respectively. These values are close
to those of the previous first-principles calculation, which
were 2.64!B and 2.70!B,12) respectively.

Figure 4(b) shows the PDOS for the oxygen atom between
the Co and Mn atoms. The oxygen placed between Co(½) and
Mn(½) atoms is denoted by O(""), while the oxygen placed
between Co(½) and Mn(¾) atoms is denoted by O("#). The
difference in the PDOS between O("") and O("#) indicate
that the atoms are in non-equivalent. This symmetry breaking
induced by the antiferromagnetic spin ordering ""## is the
origin of the finite electric dipole moment of the spin chains
in Ca3CoMnO6.

4.2 Magnetic structure dependence of electric polarization
We calculated the pure electronic polarization based on

the Berry phase method. The magnitude of the electronic
polarization in the most stable magnetic structure [M0,
Fig. 3(a)] is 1245 µC/m2, whereas that of M1 [Fig. 3(b)] is
3719 µC/m2.

The only difference between the magnetic states M0 and
M1 is the spin configuration of chain (ii). The magnetic
structure of M0 is ðA;B;AÞ, while that of M1 is ðA;C;AÞ, as
shown in Figs. 3(a) and 3(b), respectively. Namely, M1 is the
magnetic structure where the spins in the chain (ii) are shifted
to the next sites compared to M0. As already stated, the
electric polarization originates from the non-equivalence of
oxygen atoms between Co2+(½)–Mn4+(½) and Co2+(½)–
Mn4+(¾), and the electronic states of O("") are different
from those of O("#) as shown in Fig. 4(b). Note that the
electric polarization is completely zero for the ferromagnetic
spin configuration due to symmetry. Therefore we used
ferromagnetic state as reference state for Berry-phase
calculation of electric polarization.

Here, we discuss why M1 has a larger electric polarization
than M0. Figure 5 shows the schematic view of the charge
transfer between ferromagnetic Co–Mn pairs. We defined the
magnitude of the electric dipole moment in the spin chain
with !C. Figure 5(a) shows the positive electric dipole
moment, while Fig. 5(b) shows the negative electric dipole
moment. Focusing on the spin order in the chain, the

(a) (b)

Fig. 3. (Color online) ""## magnetic structure in Ca3CoMnO6. (a)
Calculated magnetic structure of the ground state M0. (b) Experimentally
observed structure7) M1. In both (a) and (b), the indexes (i)–(iii) for each
chain denotes the site of triangular lattice in Fig. 2(a).

Table I. Total energy differences !E from the most stable magnetic
structure. The values in the parentheses denote the total energy difference
including SOI. The indices (i, ii, iii) represent the symmetrically equivalent
spin configurations of the ""## magnetic order. The indices from A to D
correspond to the indices in Fig. 2(c). There are 32 possible spin
configurations. This list omits spin configurations that invert each spin.

Magnetic structure (i, ii, iii) Pattern
!E

(meV/f.u.)

M0 ðA;B;AÞ, ðA;C;DÞ, ðD;C;AÞ, 0
ðB;C;BÞ, ðB;D;AÞ, ðA;D;BÞ

M1 ðA;C;AÞ, ðB;D;BÞ +0.10 (0.06)

M2 ðA;A;AÞ, ðA;C;CÞ, ðC;C;AÞ, +2.76 (2.71)
ðB;B;BÞ, ðB;D;DÞ, ðD;D;BÞ

M3 ðA;A;BÞ, ðB;C;CÞ, ðC;D;AÞ, +2.95 (2.86)
ðB;B;CÞ, ðC;D;DÞ, ðD;A;BÞ

M4 ðA;D;CÞ, ðC;C;BÞ, ðB;A;AÞ, +3.43 (3.43)
ðB;A;DÞ, ðD;D;CÞ, ðC;B;BÞ

M5 ðA;D;AÞ, ðA;C;BÞ, ðB;C;AÞ, +3.69 (3.61)
ðB;A;BÞ, ðB;D;CÞ, ðC;D;BÞ

(a)

(b)

Fig. 4. (Color online) (a) Calculated total density of states and partial
density of states (Co, Mn) for the antiferromagnetic M0 structure. The solid
red lines show the majority-spin states while the broken green lines show the
minority-spin states. (b) Partial density of states for the antiferromagnetic M0

structure for oxygen. The top figure shows O(""), which denotes the oxygen
between Co(½) and Mn(½), while the bottom figure shows O("#) which
denotes the oxygen between Co(½) and Mn(¾).
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Electric polarization
Magnetic 
Structure

Polarization
[μC/m2]

M5 1227
M4 1544
M3 1538
M2 4316
M1 3719
M0 1245

電気分極の値に違い

The difference between M0 and  M1 is magnetic order in (ii) chain. 
37

(A, B, A) (A, C, A)

Spin shifted to next site

M0 and  M1



Electric polarization and Magnetization

Spin shiftting reverse P

M0 : (A, B, A) → 1μC/Ω M1 : (A, C, A) → 3μC/Ω
(ferrielectric) (ferroelectric)

Reversal mechanism of P

+µC −µC

+c direction -c direction

Possible 4 configurations
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Total energy for 4096 spin configuration with symmetry
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Heff = − Jijσ iσ j
i< j
∑
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Calculating 66 pair of Jij


